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Interactive robots do not exist for real

Real-world ...

Basic locomotion and manipulation skills

Advanced locomotion skills

Cognitive and physical interactions
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Interactive robots do not exist for real

... vs Laboratory science and technology

Advanced control but no living bodies around

How many (trully) collaborative robots have you seen in the
industry ?

Why is it so?
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The world is dynamic, complex and hard to predict (impact in 6s)
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Outline of the presentation

© Limitations of existing control approaches

V. Padois — 2021,/05/10 Introductior . owards solutions



(Reactive) Optimal control

Ideally, solve reactively ...

to, tr,x(t),u(t) ¢
"Assemble this motor" 0

tf
[High—level mission specifica!ion] min -Ib(t07 tr, X(t0)7 X(tf)) + / JI'(57 X(S)7 U(S))dS

boundary objective function

integral objective function

—>| subject to :

» Dynamics : x(t) = f(t, x(t), u(t))

> Path constraints : h(t,x(t),u(t)) <0
C L > State constraints : x;(t) < x(t) < xu(t)
» Control bounds : u(t) < u(t) < uy(t)

Optimal
controller

World
Model

Dynamic
Environment
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(Reactive) Optimal control

Ideally, solve reactively ...

High-level mission specification

"Assemble this motor"

}

t,

f
min  Jy(to, tr, x(to), x(tr)) +/ Ji(s,x(s), u(s))ds
> optimal |23 to, tr,x(t),u(t) t
controller gg boundary objective function
integral objective function
C ... but in practice
'

» infinite dimensional problem
> can generally not be solved, even once

< transformed in a finite dimensional problem : non linear
program / constrained parameter optimization

Dynamic — hard to solve, cannot be solved reactively
Environment

Introduction
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Looking closer

In dynamic environments, x(t) = {Xob(t), Xen ()}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed
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Looking closer

In dynamic environments, x(t) = {Xob(t), Xen ()}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed

< compute an optimal control input trajectory 7(t) at each control instant given
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In dynamic environments, x(t) = {Xob(t), Xen ()}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed

< compute an optimal control input trajectory 7(t) at each control instant given
» Control objectives : {H1,...,Hn, r}
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Looking closer

In dynamic environments, x(t) = {Xwob(t), Xenv(t)}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed

< compute an optimal control input trajectory 7(t) at each control instant given
» Control objectives : {H1,...,Hn, r}
» (Non-linear) Dynamics of the system :
> M(q)> + b(q,v) = ST (a)7 (+ 37 I (@)fc)
> vi=J(q)v Vi€l no] and v; := H;
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Looking closer

In dynamic environments, x(t) = {Xwob(t), Xenv(t)}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed

< compute an optimal control input trajectory 7(t) at each control instant given
» Control objectives : {H1,...,Hn, r}
» (Non-linear) Dynamics of the system :
> M(q)v+b(q,v) = ST (a)7 (+3 7 JE(a)fe)
> vi=J(q)v Vi€[l,no] and v; := H;
» Constraints :
TISTS Ty
T ST < Ty
q <q< q,
v <v<py
h(xenv: l-1) <0

VVVYYVYYVYY

< very complex and computationnally demanding control / optimization problem
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Outline of the presentation

© Real-life examples
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Optimal control vs real-life

Historically in the industry, the problem left to robots is simplified

Task-level planning

"Move this from A to B"

> Traj y servoing (PID)

Robot Model

Low-level control

c

Robot

Static
Environment
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Optimal control vs real-life

Static environment — reactivity not required at the task planning level ...

. as constraints are met

> offline, through planning

Task-level planning
> a posteriori through emergency stops or

stereotypical safety zones definition

"Move this from A to B"

> Trajectory servoing (PID)

Robot Model

Low-level control

c

Robot

Static
Environment
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Optimal control vs real-life

Static environment — reactivity not required at the task planning level ...

. as constraints are met

> offline, through planning
Task-level planning
“Move this from A o B" - > a posterlc.xrl through emergency s.tops or
g stereotypical safety zones definition
=
$|  Trajectory servoing (PID) 2] Yet finding a control trajectory is complex
o
= < Decouple planning and control
Low-level control
> Plan for g(t) or H(t)
» Perform trajectory servoing and low
e level-control
y
Robot

Static
Environment
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Optimal control vs real-life

Static environment — reactivity not required at the task planning level ...

Task-level planning

"Move this from A to B"

> Trajectory servoing (PID)

Low-level control

Robot Model

c

Robot

< I

Static
Environment

. as constraints are met
> offline, through planning

> a posteriori through emergency stops or
stereotypical safety zones definition

Yet finding a control trajectory is complex
< Decouple planning and control
> Plan for g(t) or H(t)

» Perform trajectory servoing and low
level-control

Still too complex !

» Simplification based on an underestimation of
the true robot capacities

< the industry is full of oversized and dangerous
robots

> Highly expert manual tuning required

< robots are not the promised versatile tools
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Illustration with the Franka Emika Panda Robot

Constants
Limits in the Cartesian space are as follows:
Name Translation Rotation Elbow
P 17000 2 2.5000 24 24750 24
= o nd rad
Prax 130000 2 25.0000 24 100000 24
m 1180
Bras 6500.0000 & 12500.0000 2 5000.0000 24
Joint space limits are:
Name ‘ Joint 1 ‘ Joint 2 ‘ Joint 3 ‘ Joint 4 ‘ Joint 5 ‘ Joint & ‘ Joint 7 ‘ Unit
Gmar 28973 17628 28973 00698 28973 37525 28973  rad
Gomin -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973 rad
Qe 21750 21750 24750 21750 26100 26100 26100 360
G 15 75 10 125 15 20 20 = v
q,,m 7500 3750 5000 6250 7500 10000 10000 :—Bf .
T 87 87 87 87 12 12 12 Nm [ > >
. -855 855
Ty 1000 1000 1000 1000 1000 1000 1000 Mo
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lllustration with the Franka Emika Panda Robot

90

— Curse of "collaborative' robotics
> Safety in the collaboration requires small robots and controlled stops
» Small robots capabilities are small
» Underestimating the capabilities of small robots leads to "not much" capabilities

> Potentially safe robots are mostly useless
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids

walking)...

specified objectives

open-loop motion
generation & planning

reference
trajectories

task regulation

task-specific
models
N
Y
whole-body
model
-

reference
trajectories

whole-body motion
regulation

actuation inputs

humanoid robot

system state

[Ibanez 2017]

Introduction Limitiations

. mostly two solutions

» Sequential simplified planning problem
solving from contact sequence to
center of mass trajectory under
balance constraints and in purely
static environment (plan once)

> Stereotypical walking gaits (planned
once) on flat grounds and online
planar trajectory adaptation

+ Trajectory servoing and multi-task
whole-body control

Towards solutions Open source software 8 /39



Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids
walking)...

specified objectives

open-loop motion
generation & planning

reference
trajectories

Difficulties
» Planning performed with advanced

task-specific . ..
| models models is costly — no reactivity

» Simplified models do not account for
the true capabilities of the system

task regulation

reference
trajectories

whole-body motion
regulation

actuation inputs

e
whole-body
model

<> underestimation / overstimation —
manual tuning

humanoid robot

» Humanoids can't do much in real life

system state

[Ibanez 2017]
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QOutline of the presentation

@ Some potential solutions

Robot low-level control as an optimisation problem

Redundancy as a key to simple adaptive behaviours

Energetic approach to safety

Plan wise, perform wise

Human understanding as key factor to appropriate robot design and control
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Outline of the presentation

© Introduction

© Limitations of existing control approaches
© Real-life examples

@ Some potential solutions
@ Robot low-level control as an optimisation problem

© Open source software
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)v + b(q,v) = ST(q)T (+ 7 I (a)fc)
> v; =J(q)v Vi€ [l,n,]and v; = H;
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)> + b(a,v) = ST(a)r (+ Y7 ST (a)F)
> vi=J(q)v Vi€[l,no] and v; := H;
» Standard IVK and operational space control approaches™®
< solution based on J* and null-space projections & = J*(q)v + (I — J*J)vyo

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012]....
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)i+ b(q,v) = ST(a)7 (+ 37 JT(a)f <)
> v, =J(q)v Vi€ [l,no] and v; = H;
» Standard IVK and operational space control approaches™®
< solution based on J* and null-space projections & = J*(q)v + (I — J*J)vyo

» Some limits on the system cannot or should never be crossed : inequalities
< cannot be accounted for properly using Linear Algebra only

D(q,v)X < h(q,v)

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints

in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)5 + b(q,v) = ST () (+ 37 JT(q)fc,)
> v, =J(q)v Vi€ [l,no] and v; = H;
» Standard IVK and operational space control approaches™®
< solution based on J* and null-space projections & = J*(q)v + (I — J*J)vyo
» Some limits on the system cannot or should never be crossed : inequalities
< cannot be accounted for properly using Linear Algebra only

D(q,v)X < h(q,v)
» These constraints are linear wrt control variables : convex solution space

< convex optimization (LQP) is a powerful tool to solve optimally the reactive
control problem.

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

@ Leave your robot alone

> Methods based on J* forces constraints to be treated as tasks — active avoidance
> QP allows to consider constraints as such — passive avoidance
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

@ Leave your robot alone

> Methods based on J* forces constraints to be treated as tasks — active avoidance
> QP allows to consider constraints as such — passive avoidance

@ More constraints than DoFs : choose which one to consider at each time

> Methods based on J* use context specific heuristics to do so
» QP comes with an optimal active constraints determination algorithm
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

@ Leave your robot alone

> Methods based on J* forces constraints to be treated as tasks — active avoidance
> QP allows to consider constraints as such — passive avoidance

@ More constraints than DoFs : choose which one to consider at each time

> Methods based on J* use context specific heuristics to do so
» QP comes with an optimal active constraints determination algorithm

@ Infeasibilty can't be ignored

> Methods based on J* can solve infeasible problems — constraints violation
» QP can’t be solved if infeasible — deal with this problem first
[Rubrecht 2012a, Meguenani 2017b, Del Prete 2018a]
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Constraints compliance as a control feature

For example :

% . L o 2
Tk+1 = argmin Hobj (qkﬂ,xkﬂ) Ho + €
Tht1:Gk41 ¢

2

Tk+1
i
such that M(q«)q,.1 + b(q, q,) = ST(qu)Tre

Tmin < Tkt1 < Tmax
Amin < Qi1 < Gy
Gmin < Qpi1 < G

0 <™ Vi€ {1, .., non}

Q-

obj (Elk+175'(:+1) = i‘k'ii + PD(kaxzi-sl) —J(a)a,.. — J(a,)ax

o
Xkt1
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Constraints compliance as a control feature : the teleoperation case

» PhD thesis Sébastien Rubrecht, ANR TELEMACH, CIFRE Bouygues
Construction [Rubrecht 2010, Rubrecht 2011, Rubrecht 2012a]

» Context : Teleoperation in tunnel boring machine cutter-heads

> Static environment, interactive task definition
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Constraints compliance as a control feature

» PhD work of Lucas Joseph, CIFRE GE Healthcare [Joseph 2018¢]

» Dynamic environment : perception in the loop and reactive constraints adaptation

. Padois — 2021/05/10 Introduction Limitiations Real-life examples Open source software 13 /39



Outline of the presentation

© Introduction

© Limitations of existing control approaches
© Real-life examples

@ Some potential solutions

o Redundancy as a key to simple adaptive behaviours

© Open source software
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Where is redundancy hiding ?

» Classically, it's considered to be related to the null-space of the Jacobian
v=JQv+ (I —J" NvoorT=JT(q)f + (I —J"J" )7
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Where is redundancy hiding ?

» Classically, it's considered to be related to the null-space of the Jacobian
v=Jqv+(—J " NvoorT=J"(q)f + (I —J"J" )7

> In a QP, it does not appear explicitely. Three possibilities :

@ Write the cost function as a weighted sum of individual task constraints
[Salini 2011],[Bouyarmane 2011]

T = arg};nin T(X) = Zzl Ti(X,W;)+wTo (1)
subject to  M(q)v + b(q,v) = q)T + Z"C JT (2)
A(q, V)X = b(q,v) 3

D(q,v)X < h(q,v) 4)
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Where is redundancy hiding ?

» Classically, it's considered to be related to the null-space of the Jacobian
v=Jqv+(—J " NvoorT=J"(q)f + (I —J"J" )7

> In a QP, it does not appear explicitely. Three possibilities :

@ Write the cost function as a weighted sum of individual task constraints
[Salini 2011],[Bouyarmane 2011]

@ Solve a cascade of n, QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]

T = argmin T:(X) (1)
X

subject to  M(q)¥ + b(q,v) = q)T + ch JT )¢ (2)

A(q7 V)X - b(q7 V) (3)

D(q,v)X < h(q,v) 4)

T =TF Vi<i (5)
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Where is redundancy hiding ?

» Classically, it's considered to be related to the null-space of the Jacobian
v=Jqv+(—J NvsorT=J"(q)f + (I —J"J" ")

> In a QP, it does not appear explicitely. Three possibilities :

@ Write the cost function as a weighted sum of individual task constraints
[Salini 2011],[Bouyarmane 2011]

@ Solve a cascade of n, QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]

@ Solve a QP allowing the formulation and the smooth transition between both soft
and strict hierarchy — Generalized Hierarchical Control [Liu 2016]

7% = argmin T(X) = 2711 Ti(T,fc,v)) (1)
T,fc, 0! -
subject to  M(q)Pi’ + b(q,v) = ST (q)7 + ch JT(q)fc, (2)
A(q,v)lr", £, Po'T]T = b(q,v) 3)
D(q,v)[r7,fl,P'T]T < h(q,v) 4)
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Priorities in Generalized Hierarchical Control [Liu 2016]

1
! 1
1 a” = ﬂ"------..... ~
! 1
J— N
: a]'t 0 : 057,3 > s
1
! 1

J

N

______________ 0<Oéz'j<1 — ..
0<Oéj1;<1M

Q5 < Qg

e Task activaton «;; =1 — «;; =0

e Task deactivation @i =0 — ay; =1
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Redundancy as a key to simple adaptive behaviours

» Redundancy also hides in the regularization task To
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Redundancy as a key to simple adaptive behaviours

» Redundancy also hides in the regularization task To

» Often treated by default — converge towards a "good posture"
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Redundancy as a key to simple adaptive behaviours

» Redundancy also hides in the regularization task To
» Often treated by default — converge towards a "good posture"

> "Good postures" can help convergence of NLP at the planning phase
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Redundancy as a key to simple adaptive behaviours

» Redundancy also hides in the regularization task To
» Often treated by default — converge towards a "good posture"
» "Good postures" can help convergence of NLP at the planning phase

— But they mostly artificially constrain the solution space
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Redundancy as a key to simple adaptive behaviours

Redundancy also hides in the regularization task To
Often treated by default — converge towards a "good posture"
"Good postures" can help convergence of NLP at the planning phase

But they mostly artificially constrain the solution space

v vwvyw

There are some alternatives : gravity compensation, viscous friction, middle of the
constraints,...
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Redundancy as a key to simple adaptive behaviours

Redundancy also hides in the regularization task To
Often treated by default — converge towards a "good posture"
"Good postures" can help convergence of NLP at the planning phase

But they mostly artificially constrain the solution space

vl vvyw

There are some alternatives : gravity compensation, viscous friction, middle of the
constraints, ...

Perceived mass in the y-direction

N w IS

Perceived mass (kg)

2 4 10 12 14

6 8
Time (s)
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Redundancy as a key to simple adaptive behaviours

» Apparent mass minimization in the potential direction of interaction [Joseph 2018a]

Perceived mass in the y-direction

Perceived mass (kg)
N

2 4 10 12 14

6 8
Time (s)
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Redundancy as a key to simple adaptive behaviours

» Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
> Makes a significative difference at impact time (H2020 COVR HARRY?2 project)

(a) Configuration g, (b) Configuration g,
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Redundancy as a key to simple adaptive behaviours

» Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
> Makes a significative difference at impact time (H2020 COVR HARRY?2 project)

Mass (kg)

[ .ﬂ

0.1 0.25 05
Impact velocity — v* (m/s)

8 (rad)

(b) Comparison of the averaged maximum peak force at im-
pact time as a function of impact velocity and in two different
configurations g, (blue) and g, (yellow). Standard deviation
is plotted as a red whisker.
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Outline of the presentation

© Introduction

© Limitations of existing control approaches
© Real-life examples

@ Some potential solutions

o Energetic approach to safety

© Open source software
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Energetic approach to safety

Important observations
» Fixed-based robot can’t escape and Human motion and intention is hard to predict

— Collisions will occur
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Energetic approach to safety

Important observations
» Fixed-based robot can’t escape and Human motion and intention is hard to predict

— Collisions will occur

» Dissipated Kinetic Energy at impact — source of danger :

/ Fimpact du = Edissipated

u

_ Echum + Ecrob

> Robot Kinetic Energy (expressed at the end-effector) :

Ecw=3x[Ng)x with  N(q) = (J(@M*(q)J7 ()
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Energetic approach to safety

Important observations
> Fixed-based robot can’t escape and Human motion and intention is hard to predict

— Collisions will occur

» Dissipated Kinetic Energy at impact — source of danger :

/ Fimpact du = Eclissipated

u

_ Echum + Ecrob

> Robot Kinetic Energy (expressed at the end-effector) :
Ecx = 3xiNg)xc  with  A(g) = (J(a)M*(q)J7(q))
» Future Kinetic Energy : Ec x+1 = Ecx + AE.

AE. = (it + 0555, (A1)%) " N(q,) ki1
———

Expected task motion Equivalent actuation force
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Energetic approach to safety

Important observations
» Fixed-based robot can’t escape and Human motion and intention is hard to predict

— Collisions will occur

> Dissipated Kinetic Energy at impact — source of danger :

/ Fimpactdu = Edissipated

u

_ Echum + Ecrob

> Robot Kinetic Energy (expressed at the end-effector) :

Ecx = 3x(MNg)xk  with  A(q) = (J(@M (a)J7(q))"

> Future Kinetic Energy : Ec 41 = Ec .k + AEc

AE. = AXZ—+1 A(Qk)J(Qk)M_l(Qk)(sT(Qk)TkH — b(q,,vi)) + J(Qk)l’k
——
Expected task motion Equivalent actuation force

Introduction Limitiations Real-life examples Open source software 19 / 39



Energetic approach to safety

Important observations
» Fixed-based robot can’t escape and Human motion and intention is hard to predict

— Collisions will occur

> Dissipated Kinetic Energy at impact — source of danger :

/ Fimpactdu = Edissipated

u

_ Echum + Ecrob

> Robot Kinetic Energy (expressed at the end-effector) :

Ecx = 3x(MNg)xk  with  A(q) = (J(@M (a)J7(q))"

> Future Kinetic Energy : Ec 41 = Ec .k + AEc

AE. = AXZ—+1 A(Qk)J(Qk)M_l(Qk)(sT(Qk)TkH — b(q,,vi)) + J(Qk)l’k
——
Expected task motion Equivalent actuation force

» We can write a constraint on Kinetic energy at each time [150 2016]

Introduction Limitiations Real-life examples Open source software 19 / 39



Energetic approach to safety

EEE ROS Hi dist Robot Dynamic model
istance | ————
@ ——— Controller =3 krc |«
Ce d torque

. [Meguenani 2017a],[Joseph 2018b]
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Energetic approach to safety

Experimental setup v ‘i’uﬂ' .

. [Meguenani 2017a],[Joseph 2018b]
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Energetic approach to safety [Joseph 2020]
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The robot safely continues operating when in proximity to the human.

Linear tracking error is minimized by modulating the desired linear velocity
of the trajectory.

This allows to maximize the robot's performance without jeopardizing
the human's safety
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Outline of the presentation

© Introduction

© Limitations of existing control approaches
© Real-life examples

@ Some potential solutions

o Plan wise, perform wise

© Open source software
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]

‘Time-step: k+1] Time-step: k+2, Time-step: k+d,  Time-siep: k+5| Time-step: k+7 ‘Time-step: k+9
d=05m d=-8m d=-22m d=275m d=355m 9.5 m
v=9mis mis 6mis v= 3ms mis
a=-1m/s a=-1m/s? a=-1ms a=-1mis a=-1mis -l mis?

iy Sy Sy fa %—\
T T T T T T

Time-step: k

d=10m d=0m

Time-step: k+3
d
v=10ms

Time-step: k+6|  Time-step: k48§ Time-step: k+10
d=-32m d=38m d=-40m
ve Oms m's v= 2mis v= Omis
a=-lmsg | a=-1mis a= 1w a=-lwist a= 0w
COLLISION | STOP
>
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> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]

Time-step: k+1 Time-step: k+2 Time-step: k4 Time-step: k+5|
d=-8m d=-22m
mis v= Gmls
=l a=-1w/s
T T T T
Time-step: k Time-step: k+3 Time-step: k46| Time-step: k+§ Time-step: k+10
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[ COLLISION STOP

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, 'Ijmina l./max) S qii1 S q:ﬂax(qk’ Vi, ijmin, fjmax)
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» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, 'Ijmina l./max) S qii1 S q:,,ax(qk, Vi, ijmin, fjmax)

> Unfortunately 41 = M~%(q,)(S"(q,)Tk+1 — b(q,,vk)) — Umax,kn =7

Introduction Li ions Re: e examples Open source software 23 /39



Viability — Do not plan to do what you cannot do.
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[Fraichard 2004],[Wieber 2008]
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COLLISION
50 m

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, ’Ijmina l./max) S qii1 S q:,,ax(qk, Vi, ijmin, fjmax)

> Unfortunately 41 = M~%(q,)(S"(q,)Tk+1 — b(q,,vk)) — Umax,kn =7

» Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]
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> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]

Time-step: k+1] Time-step: k+2 Time-step: k+4  Time-siep: k+5| Time-step: k+7 Time-step: k+9
d=05m d=-8m d=-2m d=-275m 5.5 m d=-395m
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a=-lms a=-1m/s? a=-1m/s a=-1mjs? a=-1m/s* a=-1mjs?
Q | | | | |
T T T T T
Time-step: k Time-step: k+3 Time-step: k+6 1
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COLLISION

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, I)miﬂa l.lmax) S qk+1 S q:-nax(qky Vi, l"min; fjmax)

> Unfortunately 41 = M~%(q,)(S"(q,)Tk+1 — b(q,,vk)) = Umax,kin =7

» Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]

> The problem gets even more complex when looking in the task space?
%1 = (@M H(q,)(ST(q) i1 — b(ay, i) + J(@ vk = Xmaxkin =7
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Model Predictive Control

» Global optimality does not exist
< Try to be optimal given the current state othe world and its close future predicted
evolution

< Model Predictive Control
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Model Predictive Control

» Global optimality does not exist

— Try to be optimal given the current state othe world and its close future predicted
evolution

— Model Predictive Control
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Model Predictive Control

» Global optimality does not exist

< Try to be optimal given the current state othe world and its close future predicted
evolution

— Model Predictive Control
instantaneous objectives/constraints
objectives/constraints hierarchy

reactive .
) ) e e Coordinator
control primitives desired targets

actuation
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Model Predictive Control

» Global optimality does not exist

— Try to be optimal given the current state othe world and its close future predicted
evolution

< Model Predictive Control

intermediate objectives/constraints

objectives/constraints hierarchy

predictive
control primitives

reduced
models

task-optimal & independent
instantaneous
objectives/constraints

reactive K
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Model predictive control widely used for humanoid balance

. [Ibanez 2014]
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Tasks compatibility — If you can’t do it, don’t try the same thing again

Context
» Funding : UPMC
» PhD student : R. Lober
» Co-advisor : O. Sigaud

» Topic : Online tasks optimization for
whole-body control
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Tasks compatibility — If you can’t do it, don’t try the same thing again

Context
Funding : UPMC
PhD student : R. Lober
Co-advisor : O. Sigaud

vVVvyyvyy

Topic : Online tasks optimization for
whole-body control

Concept

» Whole-Body Control : perform multiple tasks
i.e. walking, reaching, posture

» Combining tasks can result in unexpected
overall behaviours

» Due to :

> Coarsely planned tasks : model quality vs
computation time

> Perturbations at run time

Can we incrementally improve the quality of
tasks achievement ?
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> Coarsely planned tasks : model quality vs
computation time

> Perturbations at run time

Can we incrementally improve the quality of
tasks achievement ?
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Tasks compatibility — If you can’t do it, don’t try the same thing again

Task compatibility optimization, how ?

7" = argmin T (M1, Ti(X), A2, T2(X), ..oy Anpy T (X))
X

subject to  M(q)i + b(q,v) = S(q) 7+ >, JL(q)f,
A(q,v)X = b(q,v)
D(q,v)X < h(q,v)
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Tasks compatibility — If you can’t do it, don’t try the same thing again

Task compatibility optimization, how ?

*

75 = argmin T (A1, Ta(X), X2, T2(X), ..oy Ay, Thi (X))
X

subject to  M(q)i + b(q,v) = S(q) 7+ >, JL(q)f,
A(q,v)X = b(q,v)
D(q,v)X < h(q,v)

» A robot cannot perform incompatible tasks — need for priorities

» Learn or adapt priorities

> W% generate compatible tasks!
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Tasks compatibility (1)

Task compatibility optimization, what variables ?

Optimization variables :

» Tasks are defined by trajectories :

Ti = [|[9i@) + Ji(q,v)v — 5|

N

» Min-jerk trajectories generated from
waypoints

< Optimize the ny waypoints : A\; = [x y 2]/
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Tasks compatibility (2)

Task compatibility optimization, what do we optimize ?

Cost function :
» Tracking Cost :

tend

=0 X = o)
£=0.0 %%%
tend
. t * 2
> Goal Cost : jz = ZO:O d—A||x,- () = Anll :
t=0.

tend

> Energy cost : je = f3 Z ()|

t=0.0
> Total cost :
Ntasks
je=|ie+ > (i+is) / fend
i=1
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Tasks compatibility (3)

Task compatibility optimization, Experiments

Scenarios :

» Reaching movements under bipedal
equilibrium (constant CoM reference
position)

» Seat to stand under bipedal equilibrium
(dynamic CoM reference position)

» Optimized waypoint(s) : middle waypoint
of the CoM reference trajectory
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Tasks compatibility (4)

Task compatibility optimization, Results [Lober 2016],[Lober 2020]
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Tasks compatibility

Task compatibility optimization, Results [Lober 2016],[Lober 2020]
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The key ingredient to planning and model predictive control is ...

> .. a very good estimation of your motor capabilities in task space
» Complex : state dependant, polytopes
< MPC based motion replanning with state dependant robot capabilities

> PhD of Nicolas Torres (Cifre PSA) and Antun Skuric (Lichie Airbus)
[Skuric 2021] [Pickard 2021]

- Force ellipsoid
- standard approach
- robot design
- trajectory planning
- efficient calculation
- not accurate

- Force polytopes
- exact solution
- accurate
- vertex finding complex
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Outline of the presentation

© Introduction

© Limitations of existing control approaches
© Real-life examples

@ Some potential solutions

@ Human understanding as key factor to appropriate robot design and control

© Open source software
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Virtual human models

Virtual Human as a virtual sensor

Task and expertise analysis [Benhabib 2020]
[Maurice 2017]

Motion capture.

Center of pressure evolution

\

No cobot Cobot 1 Cobot 2
Autonomous manikin Pareto front of generation 200 Pareto front of generation 200
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PhD Thesis Nassim Benhabib (2018-) in collaboration with CFA BTP [Benhabib 2020]

Context

o Securing a dangerous industrial task
involving a strong tool-operator interaction

o Keeping human know-how

o Milling wood chosen as an exemplary
task

Methodology

o Developing a simulator that describes
the wrenches exchanged between the
craftsman and the tool

o Deducing potentially injurious cases

o Propose a cobotic assistance

Towards solutions



Motor variability

Flexibllité de la commande (type de controle)
Bruit sur la commande (préparation, transmission)

Opérateur (genre, expérience, motivation,
fatigue musculalre, age, motivation, douleur)

Tache (position initiale,
finale, amplitude, vitesse, etc.)

Redondance
(inter- et intra-musculaire,
inter- et intra-articulaire)

Couples T

X

W

AN ;

bArq\es q
Positions  x
Forces f

[Gaudez 2016], [Savin 2017],[Savin 2019]
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» Large variability in the performing of a

given movement

» "The" optimal movement does not
exist (or is not advised)
» Importance of variability in motor
strategy
> Delays the appearance of fatigue

[Srinivasan 2012]
> Positive factor to avoid MSD

Real-life examples Open source software

36 / 39



Motor variability

Flexibllité de la commande (type de controle)
Bruit sur la commande (préparation, transmission)

Opérateur (genre, expérience, motivation,
fatigue musculalre, age, motivation, douleur)

Tache (position initiale,
finale, amplitude, vitesse, etc.)

Redondance
(inter- et intra-musculaire,
inter- et intra-articulaire)

Couples T

Angles g
Positions x
Forces f

[Gaudez 2016], [Savin 2017],[Savin 2019]

Introduction Limitiations

given movement

"The" optimal movement does not
exist (or is not advised)
Importance of variability in motor
strategy

> Delays the appearance of fatigue
[Srinivasan 2012]
> Positive factor to avoid MSD

Explore the link between motor
variability and expertise

Real-life examples Open source software

Large variability in the performing of a

36 / 39



Motor variability

Flexibllité de la commande (type de controle)
Bruit sur la commande (préparation, transmission)

Opérateur (genre, expérience, motivation,
fatigue musculalre, age, motivation, douleur)

Tache (position initiale,
finale, amplitude, vitesse, etc.)

Redondance
(inter- et intra-musculaire,
inter- et intra-articulaire)

Couples T

b Angles g
Positions  x
Forces  f

[Gaudez 2016], [Savin 2017],[Savin 2019]

Introduction Limitiations

Real-life examples

Large variability in the performing of a
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"The" optimal movement does not
exist (or is not advised)
Importance of variability in motor
strategy

> Delays the appearance of fatigue
[Srinivasan 2012]
> Positive factor to avoid MSD

Explore the link between motor
variability and expertise
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(2020 —) with INRS and Larsen@Inria
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Some available and functionnal software

> QP :

> torque_gp : https://gitlab.inria.fr/auctus/panda/velocity_gp
> velocity_qp : https://gitlab.inria.fr/auctus/panda/torque_gp
> RTT_panda : https://gitlab.inria.fr/auctus/panda/rtt_panda/
» Orca : https://orca-controller.readthedocs.io

» Robot capabilities computation :
> polytope_vertex_search :
https://gitlab.inria.fr/askuric/polytope_vertex_search

> Utilities (not yet shared) :

» 2D laser ROS driver

» 6-axis FT sensor driver
> .
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https://gitlab.inria.fr/auctus/panda/velocity_qp
https://gitlab.inria.fr/auctus/panda/torque_qp
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https://orca-controller.readthedocs.io
https://gitlab.inria.fr/askuric/polytope_vertex_search

— Thank you for your attention —
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