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Interactive robots do not exist for real

Real-world ...

Basic locomotion and manipulation skills

Advanced locomotion skills

Cognitive and physical interactions
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Interactive robots do not exist for real

... vs Laboratory science and technology

Advanced control but no living bodies around

How many (trully) collaborative robots have you seen in the
industry ?

Why is it so?
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The world is dynamic, complex and hard to predict (impact in 6s)
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Outline of the presentation

© Limitations of existing control approaches
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(Reactive) Optimal control

Ideally, solve reactively ...

to, tr,x(t),u(t) ¢
"Assemble this motor" 0

tf
[High—level mission specifica!ion] min -Ib(t07 tr, X(t0)7 X(tf)) + / JI'(57 X(S)7 U(S))dS

boundary objective function

integral objective function

—>| subject to :

» Dynamics : x(t) = f(t, x(t), u(t))

> Path constraints : h(t,x(t),u(t)) <0
C L > State constraints : x;(t) < x(t) < xu(t)
» Control bounds : u(t) < u(t) < uy(t)

Optimal
controller

World
Model

Dynamic
Environment

Introduction Real-life examples Towards solutions Conclusions 4/19



(Reactive) Optimal control

Ideally, solve reactively ...

High-level mission specification

"Assemble this motor"

}

t,

f
min  Jy(to, tr, x(to), x(tr)) +/ Ji(s,x(s), u(s))ds
> optimal |23 to, tr,x(t),u(t) t
controller gg boundary objective function
integral objective function
C ... but in practice
'

» infinite dimensional problem
> can generally not be solved, even once

< transformed in a finite dimensional problem : non linear
program / constrained parameter optimization

Dynamic — hard to solve, cannot be solved reactively
Environment

Introduction Real-life examples Towards solutions Conclusions 4/19



Looking closer

In dynamic environments, x(t) = {Xob(t), Xen ()}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed
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Looking closer

In dynamic environments, x(t) = {Xwob(t), Xenv(t)}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed

< compute an optimal control input trajectory 7(t) at each control instant given
» Control objectives : {H1,...,Hn, r}
» (Non-linear) Dynamics of the system :
> M(q)> + b(q,v) = ST (a)7 (+ 37 I (@)fc)
> vi=J(q)v Vi€l no] and v; := H;
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Looking closer

In dynamic environments, x(t) = {Xwob(t), Xenv(t)}
< requires perception for the state of the environment Xen (t)
< no control over Xen (t) — reactive planning needed

< compute an optimal control input trajectory 7(t) at each control instant given
» Control objectives : {H1,...,Hn, r}
» (Non-linear) Dynamics of the system :
> M(q)v+b(q,v) = ST (a)7 (+3 7 JE(a)fe)
> vi=J(q)v Vi€[l,no] and v; := H;
» Constraints :
TISTS Ty
T ST < Ty
q <q< q,
v <v<py
h(xenv: l-1) <0

VVVYYVYYVYY

< very complex and computationnally demanding control / optimization problem
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Outline of the presentation

© Real-life examples
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Optimal control vs real-life

Historically in the industry, the problem left to robots is simplified

Task-level planning

"Move this from A to B"

> Traj y servoing (PID)

Robot Model

Low-level control

c

Robot

Static
Environment
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Optimal control vs real-life

Static environment — reactivity not required at the task planning level ...

. as constraints are met

> offline, through planning

Task-level planning
> a posteriori through emergency stops or

stereotypical safety zones definition

"Move this from A to B"

> Trajectory servoing (PID)

Robot Model

Low-level control

c

Robot

Static
Environment
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Optimal control vs real-life

Static environment — reactivity not required at the task planning level ...

. as constraints are met

> offline, through planning
Task-level planning
“Move this from A o B" - > a posterlc.xrl through emergency s.tops or
g stereotypical safety zones definition
=
$|  Trajectory servoing (PID) 2] Yet finding a control trajectory is complex
o
= < Decouple planning and control
Low-level control
> Plan for g(t) or H(t)
» Perform trajectory servoing and low
e level-control
y
Robot

Static
Environment
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Optimal control vs real-life

Static environment — reactivity not required at the task planning level ...

Task-level planning

"Move this from A to B"

> Trajectory servoing (PID)

Low-level control

Robot Model

c

Robot

< I

Static
Environment

. as constraints are met
> offline, through planning

> a posteriori through emergency stops or
stereotypical safety zones definition

Yet finding a control trajectory is complex
< Decouple planning and control
> Plan for g(t) or H(t)

» Perform trajectory servoing and low
level-control

Still too complex !

» Simplification based on an underestimation of
the true robot capacities

< the industry is full of oversized and dangerous
robots

> Highly expert manual tuning required

< robots are not the promised versatile tools
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Illustration with the Franka Emika Panda Robot

Constants
Limits in the Cartesian space are as follows:
Name Translation Rotation Elbow
P 17000 2 2.5000 24 24750 24
= o nd rad
Prax 130000 2 25.0000 24 100000 24
m 1180
Bras 6500.0000 & 12500.0000 2 5000.0000 24
Joint space limits are:
Name ‘ Joint 1 ‘ Joint 2 ‘ Joint 3 ‘ Joint 4 ‘ Joint 5 ‘ Joint & ‘ Joint 7 ‘ Unit
Gmar 28973 17628 28973 00698 28973 37525 28973  rad
Gomin -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973 rad
Qe 21750 21750 24750 21750 26100 26100 26100 360
G 15 75 10 125 15 20 20 = v
q,,m 7500 3750 5000 6250 7500 10000 10000 :—Bf .
T 87 87 87 87 12 12 12 Nm [ > >
. -855 855
Ty 1000 1000 1000 1000 1000 1000 1000 Mo
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lllustration with the Franka Emika Panda Robot

Constants

90

— Curse of "collaborative' robotics
> Safety in the collaboration requires small robots and controlled stops
» Small robots capabilities are small
» Underestimating the capabilities of small robots leads to "not much" capabilities

> Potentially safe robots are mostly useless
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids

walking)...

specified objectives

open-loop motion
generation & planning

reference
trajectories

task regulation

task-specific
models
N
Y
whole-body
model
-

reference
trajectories

whole-body motion
regulation

actuation inputs

humanoid robot

system state

[Ibanez 2017]

Introduction

. mostly two solutions

» Sequential simplified planning problem
solving from contact sequence to
center of mass trajectory under
balance constraints and in purely
static environment (plan once)

> Stereotypical walking gaits (planned
once) on flat grounds and online
planar trajectory adaptation

+ Trajectory servoing and multi-task
whole-body control
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids
walking)...

specified objectives

open-loop motion
generation & planning

reference
trajectories

Difficulties
» Planning performed with advanced

task-specific . ..
| models models is costly — no reactivity

» Simplified models do not account for
the true capabilities of the system

task regulation

reference
trajectories

whole-body motion
regulation

actuation inputs

e
whole-body
model

<> underestimation / overstimation —
manual tuning

humanoid robot

» Humanoids can't do much in real life

system state

[Ibanez 2017]

Towards solutions Conclusions 8/19

Introduction



Outline of the presentation

@ Some potential solutions
@ Robot low-level control as an optimisation problem
@ Plan wise, perform wise
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© Real-life examples

@ Some potential solutions
@ Robot low-level control as an optimisation problem
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)v + b(q,v) = ST(q)T (+ 7 I (a)fc)
> v; =J(q)v Vi€ [l,n,]and v; = H;
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)> + b(a,v) = ST(a)r (+ Y7 ST (a)F)
> vi=J(q)v Vi€[l,no] and v; := H;
» Standard IVK and operational space control approaches™®
< solution based on J* and null-space projections & = J*(q)v + (I — J*J)vyo

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012]....
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)i+ b(q,v) = ST(a)7 (+ 37 JT(a)f <)
> v, =J(q)v Vi€ [l,no] and v; = H;
» Standard IVK and operational space control approaches™®
< solution based on J* and null-space projections & = J*(q)v + (I — J*J)vyo

» Some limits on the system cannot or should never be crossed : inequalities
< cannot be accounted for properly using Linear Algebra only

D(q,v)X < h(q,v)
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints

in the low-level control problem : at each control instant, find the actuation torque
T optimizing under constraints some objective related task v* = J(q)v

» Equation of motion and joint space to task space mappings : equalities
— can be solved using Linear Algebra

> M(q)5 + b(q,v) = ST () (+ 37 JT(q)fc,)
> v, =J(q)v Vi€ [l,no] and v; = H;
» Standard IVK and operational space control approaches™®
< solution based on J* and null-space projections & = J*(q)v + (I — J*J)vyo
» Some limits on the system cannot or should never be crossed : inequalities
< cannot be accounted for properly using Linear Algebra only

D(q,v)X < h(q,v)
» These constraints are linear wrt control variables : convex solution space

< convex optimization (LQP) is a powerful tool to solve optimally the reactive
control problem.

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

@ Leave your robot alone

> Methods based on J* forces constraints to be treated as tasks — active avoidance
> QP allows to consider constraints as such — passive avoidance
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

@ Leave your robot alone

> Methods based on J* forces constraints to be treated as tasks — active avoidance
> QP allows to consider constraints as such — passive avoidance

@ More constraints than DoFs : choose which one to consider at each time

> Methods based on J* use context specific heuristics to do so
» QP comes with an optimal active constraints determination algorithm
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

@ Leave your robot alone

> Methods based on J* forces constraints to be treated as tasks — active avoidance
> QP allows to consider constraints as such — passive avoidance

@ More constraints than DoFs : choose which one to consider at each time

> Methods based on J* use context specific heuristics to do so
» QP comes with an optimal active constraints determination algorithm

@ Infeasibilty can't be ignored

> Methods based on J* can solve infeasible problems — constraints violation
» QP can’t be solved if infeasible — deal with this problem first
[Rubrecht 2012a, Meguenani 2017b, Del Prete 2018a]
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Constraints compliance as a control feature

For example : 2

% . L o 2
Tk+1 = argmin Hobj (qkﬂ,xkﬂ) Ho + €
Tht1:Gk41 ¢

T k+1
L prs}

such that M(q«)q,.1 + b(q, q,) = ST(qu)Tre
Tmin < Tip1 < Tmax
Amin < Qi1 < Gy
Gmin < Qpi1 < G

0 <™ Vi€ {1, .., non}

Q-

obj (Elk+175'(:+1) = i‘k'ii + PD(kaxzi-sl) —J(a)a,.. — J(a,)ax

o
Xkt1
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Constraints compliance as a control feature : the teleoperation case

» PhD thesis Sébastien Rubrecht, ANR TELEMACH, CIFRE Bouygues
Construction [Rubrecht 2010, Rubrecht 2011, Rubrecht 2012a]

» Context : Teleoperation in tunnel boring machine cutter-heads

> Static environment, interactive task definition
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Constraints compliance as a control feature

» PhD work of Lucas Joseph, CIFRE GE Healthcare [Joseph 2018¢]

» Dynamic environment : perception in the loop and reactive constraints adaptation
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© Limitations of existing control approaches
© Real-life examples

@ Some potential solutions

@ Plan wise, perform wise

© Conclusions
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?

[Fraichard 2004], [Wieber 2008]

Time-step: k+1

Time-step: k+2 Time-step: k4 Time-step: k+5| Time-step: k+7 Time-step: k+9
d=05m d=-8m d=22m d=275m d=355m 9.5 m
v=9mis wis 6mis v= 3mis mis
a=-1m/s a=-1m/s? a=-1ms a=-1mis a=-lm/s -l mis?

Q —| et Som 50w a %w
T T T T T
Time-step: k Time-step: k46| Time-step: k+§ Time-step: k+10
d=10m d=0m d=-32 d=-38m d=-40m
v=10m/s v# Omls m's v= 2mis v= Omis
a=-1ms pa=-1mi a=-1ws a=-1m/s a= 0 ms
[ COLLISION STOP
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]

Time-step: k+1 Time-step: k+2 Time-step: k4 Time-step: k+5|
d=-8m d=-22m
mis v= Gmls
=l a=-1w/s
T T T T
Time-step: k Time-step: k+3 Time-step: k46| Time-step: k+§ Time-step: k+10
d=10m d=0m d=-155m d= d=-38m d=-40m
v=10ms ve Omis v=dmis v= 2mis v= 0mis
a=-1ms pa=-1mi a=-1mis a=-1m/s a= 0 ms
[ COLLISION STOP

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, 'Ijmina l./max) S qii1 S q:ﬂax(qk’ Vi, ijmin, fjmax)
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?

[Fraichard 2004],[Wieber 2008]

Time-step: k+1 Time-step: k+2 Time-step: k4| Time-step: k+5| Time-step: k+7 Time-step: k+9
d=05m d=-8m d=22m d=275m 5.5m d=-395m
v=9mis v=8mis v= 6mis v= Smis mws v=lmfs
as-lmg a=-1mis? a=-1ms a=-1mis a=-1mis a=-1mhs?

- w w w w S el
T T T T T T
Time-step: k Time-step: k+3 Time-step: k46| Time-step: k+§ r
d=om d=-155m d= d=-38m
ve Oms =T v=dmis v= 2mis
a=-1mis? a=-1mhs? a=-1m/s? a=-1m/s?
*COLLISION a=-lwd o
COLLISION
50 m

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, 'Ijmina l./max) S qii1 S q:,,ax(qk, Vi, ijmin, fjmax)

> Unfortunately 41 = M~%(q,)(S"(q,)Tk+1 — b(q,,vk))
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]

Time-step: k+1 Time-step: k+2 Time-step: ka4 Time-step: k+5) Time-step: k7 Time-siep: k49
d=05m d=-8m d=-2m d=-27.5m 5. d=-395m
v=9mis v=8mis v= 6mhs v= Smis v=lmis
a=-1mig a=-1mis? a=-1m/g a=-1ms a=-lms
as-lme | a=-lms?

- w ‘ ! !

T T T T
Time-step: k Time-step: k+3 ‘Time-step: k+6)
d=0m d=-155m d=
ve Oms V=Tl v=dmis
a=-1mise =1 mis? a=-1mis
a=-lms?
COLLISION
50 m

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, ’Ijmina l./max) S qii1 S q:,,ax(qk, Vi, ijmin, fjmax)

> Unfortunately 41 = M~%(q,)(S"(q,)Tk+1 — b(q,,vk)) — Umax,kn =7

» Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]
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Viability — Do not plan to do what you cannot do.

> Existence of a solution to the control problem over an co time horizon ?
[Fraichard 2004],[Wieber 2008]

Time-step: k+1] Time-step: k+2 Time-step: k+4  Time-siep: k+5| Time-step: k+7 Time-step: k+9
d=05m d=-8m d=-2m d=-275m 5.5 m d=-395m
v=9m/s v=8m/s v= 6m/s = Sm/s m/s v=lmis
a=-lms a=-1m/s? a=-1m/s a=-1mjs? a=-1m/s* a=-1mjs?
Q | | | | |
T T T T T
Time-step: k Time-step: k+3 Time-step: k+6 1
d=0m d d=
v# Omls v= 4m/s
a=-1m/s? a=-1m/s*
COLLISION

» Modify the constraints expression to ensure compatibility [Rubrecht 2012b]
q:nin(qka Vi, I)miﬂa l.lmax) S qk+1 S q:-nax(qky Vi, l"min; fjmax)

> Unfortunately 41 = M~%(q,)(S"(q,)Tk+1 — b(q,,vk)) = Umax,kin =7

» Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]

> The problem gets even more complex when looking in the task space?
%1 = (@M H(q,)(ST(q) i1 — b(ay, i) + J(@ vk = Xmaxkin =7
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Model Predictive Control

» Global optimality does not exist
< Try to be optimal given the current state othe world and its close future predicted
evolution

< Model Predictive Control

V. Padois — 2021/11/8 Introduction Limitiations eal-life c 15 /19



Model Predictive Control

» Global optimality does not exist

— Try to be optimal given the current state othe world and its close future predicted
evolution

— Model Predictive Control

past <€—— future
\ﬂp\l\

control _|J_|_ control horizon

w

past <€——» future

A
3
=
=
g
2

PPOIN

ue]]

system state

ction horizon

sampling instant

o
S
@™ oo
W0 e

Reactive Control Predictive Control
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The key ingredient to planning and model predictive control is ...

> ... a very good estimation of your motor capabilities in task space

» Complex : state dependant, polytopes

— MPC based motion replanning with state dependant robot capabilities
» PhD of Nicolas Torres (Cifre PSA) and Antun Skuric (Lichie Airbus)

[Skuric 2021] [Pickard 2021] [Skuric 2022]

Polytope Intersection Force polytope
P 2Py Py execution time
200ms,

@y o

Execution time: 100ms
Scale: 1m 500N

Force Polytopes Polytope Minkowski sum
Praor2 P =Py by

Gl

FEA

Execution time m@ Execution time: s0ms
Seale: 1m: 1000N Seale: 1m : 2000

Scalel
1106
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Conclusions

» Global optimality does not exist a
priori
I Solving accurately for the full control
trajectory does not make sense ...
I ... and is hardly doable in a
closed-loop way
» Closed-loop local planning at high
level with low-level capabilities in
mind
> Solve reactively at low-level with
constraints

» Human modeling is a key prerequesite
to human-robot interaction

> Ergonomics [Maurice 2017], Motor
variability [Savin 2020]

> Physical capabilities [Benhabib 2020],
[Skuric 2022]

> Cognitive abilities (e.g. expertise)
and biases

Introduction

Local task-level planning

"Move this from A to B"

Trajectory servoing

Low-level control

Robot Model

C
| Robot

il

Dynamic

Real-life examples

environment

Towards solutions
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— Thank you for your attention —

s
ﬁg
8
.
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