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Interactive robots do not exist for real

Real-world ...

Basic locomotion and manipulation skills

Advanced locomotion skills

Cognitive and physical interactions
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Interactive robots do not exist for real

... vs Laboratory science and technology

Advanced control but no living bodies around

How many (trully) collaborative robots have you seen in the
industry ?

Why is it so ?
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The world is dynamic, complex and hard to predict (impact in 6s)
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Outline of the presentation

1 Introduction

2 Limitations of existing control approaches

3 Real-life examples

4 Some potential solutions
Robot low-level control as an optimisation problem
Plan wise, perform wise
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(Reactive) Optimal control

Ideally, solve reactively ...

min
t0,tf ,x(t),u(t)

Jb(t0, tf , x(t0), x(tf ))︸ ︷︷ ︸
boundary objective function

+
∫ tf

t0

Ji (s, x(s), u(s))ds︸ ︷︷ ︸
integral objective function

subject to :
I Dynamics : ẋ(t) = f (t, x(t), u(t))
I Path constraints : h(t, x(t), u(t)) ≤ 0
I State constraints : x l (t) ≤ x(t) ≤ xu(t)
I Control bounds : u l (t) ≤ u(t) ≤ uu(t)

... but in practice
I infinite dimensional problem
I can generally not be solved, even once
↪→ transformed in a finite dimensional problem : non linear

program / constrained parameter optimization
↪→ hard to solve, cannot be solved reactively
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Looking closer

In dynamic environments, x(t) = {x rob(t), xenv (t)}
↪→ requires perception for the state of the environment xenv (t)
↪→ no control over xenv (t) → reactive planning needed

↪→ compute an optimal control input trajectory τ (t) at each control instant given
I Control objectives : {H1,f , . . . ,Hno ,f }
I (Non-linear) Dynamics of the system :

I M(q)ν̇ + b(q, ν) = ST (q)τ (+
∑nc

i JT
ci (q)f ci )

I v i = J(q)ν̇ ∀i ∈ [1, no ] and v i := Ḣ i
I Constraints :

I τ l ≤ τ ≤ τ u
I τ̇ l ≤ τ̇ ≤ τ̇ u
I q l ≤ q ≤ qu
I ν̇ l ≤ ν̇ ≤ ν̇u
I h(xenv , q) ≤ 0
I ...

↪→ very complex and computationnally demanding control / optimization problem
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I Constraints :

I τ l ≤ τ ≤ τ u
I τ̇ l ≤ τ̇ ≤ τ̇ u
I q l ≤ q ≤ qu
I ν̇ l ≤ ν̇ ≤ ν̇u
I h(xenv , q) ≤ 0
I ...

↪→ very complex and computationnally demanding control / optimization problem

V. Padois – 2021/11/8 Introduction Limitiations Real-life examples Towards solutions Conclusions 5 / 19



Looking closer

In dynamic environments, x(t) = {x rob(t), xenv (t)}
↪→ requires perception for the state of the environment xenv (t)
↪→ no control over xenv (t) → reactive planning needed

↪→ compute an optimal control input trajectory τ (t) at each control instant given
I Control objectives : {H1,f , . . . ,Hno ,f }

I (Non-linear) Dynamics of the system :
I M(q)ν̇ + b(q, ν) = ST (q)τ (+

∑nc
i JT

ci (q)f ci )
I v i = J(q)ν̇ ∀i ∈ [1, no ] and v i := Ḣ i
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Optimal control vs real-life

Historically in the industry, the problem left to robots is simplified
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Optimal control vs real-life

Static environment → reactivity not required at the task planning level ...

... as constraints are met
I offline, through planning
I a posteriori through emergency stops or

stereotypical safety zones definition

Yet finding a control trajectory is complex
↪→ Decouple planning and control
I Plan for q(t) or H(t)
I Perform trajectory servoing and low

level-control
Still too complex !
I Simplification based on an underestimation of

the true robot capacities
↪→ the industry is full of oversized and dangerous

robots
I Highly expert manual tuning required
↪→ robots are not the promised versatile tools
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Illustration with the Franka Emika Panda Robot
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Illustration with the Franka Emika Panda Robot

↪→ Curse of "collaborative" robotics
I Safety in the collaboration requires small robots and controlled stops
I Small robots capabilities are small
I Underestimating the capabilities of small robots leads to "not much" capabilities
I Potentially safe robots are mostly useless
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids
walking)...

[Ibanez 2017]

... mostly two solutions
I Sequential simplified planning problem

solving from contact sequence to
center of mass trajectory under
balance constraints and in purely
static environment (plan once)

I Stereotypical walking gaits (planned
once) on flat grounds and online
planar trajectory adaptation

+ Trajectory servoing and multi-task
whole-body control
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids
walking)...

[Ibanez 2017]

Difficulties
I Planning performed with advanced

models is costly → no reactivity
I Simplified models do not account for

the true capabilities of the system
↪→ underestimation / overstimation →

manual tuning
I Humanoids can’t do much in real life
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
τ ∗ optimizing under constraints some objective related task v∗ = J(q)ν

I Equation of motion and joint space to task space mappings : equalities
↪→ can be solved using Linear Algebra
I M(q)ν̇ + b(q, ν) = ST (q)τ (+

∑nc
i JT

ci (q)f ci )
I v i = J(q)ν̇ ∀i ∈ [1, no ] and v i := Ḣ i

I Standard IVK and operational space control approaches∗
↪→ solution based on J+ and null-space projections ν̇ = J+(q)v + (I − J+J)ν̇0

I Some limits on the system cannot or should never be crossed : inequalities
↪→ cannot be accounted for properly using Linear Algebra only

D(q,ν)X ≤ h(q,ν)

I These constraints are linear wrt control variables : convex solution space
↪→ convex optimization (LQP) is a powerful tool to solve optimally the reactive
control problem.
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

1 Leave your robot alone
I Methods based on J+ forces constraints to be treated as tasks → active avoidance
I QP allows to consider constraints as such → passive avoidance

2 More constraints than DoFs : choose which one to consider at each time
I Methods based on J+ use context specific heuristics to do so
I QP comes with an optimal active constraints determination algorithm

3 Infeasibilty can’t be ignored
I Methods based on J+ can solve infeasible problems → constraints violation
I QP can’t be solved if infeasible → deal with this problem first

[Rubrecht 2012a, Meguenani 2017b, Del Prete 2018a]
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Constraints compliance as a control feature

For example :
τ k+1

∗ = arg min
τ k+1,q̈k+1

∥∥obj
(
q̈k+1, ẍ

∗
k+1
)∥∥2

Qt
+ ε

∥∥∥∥[ τ k+1
q̈k+1

]∥∥∥∥2
Qr

such that M(qk )q̈k+1 + b(qk , q̇k ) = ST (qk )τ k+1

τ min ≤ τ k+1 ≤ τ max

qmin ≤ qk+1 ≤ qmax

q̇min ≤ q̇k+1 ≤ q̇max

0 ≤ d rob,objj
k+1 ∀j ∈ {1, ..., nobj}

obj
(
q̈k+1, ẍ

∗
k+1
)

= ẍdes
k+1 + PD(xk , xdes

k+1)︸ ︷︷ ︸
ẍ∗k+1

−J(qk )q̈k+1 − J̇(qk )q̇k
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Constraints compliance as a control feature : the teleoperation case

I PhD thesis Sébastien Rubrecht, ANR TELEMACH, CIFRE Bouygues
Construction [Rubrecht 2010, Rubrecht 2011, Rubrecht 2012a]

I Context : Teleoperation in tunnel boring machine cutter-heads
I Static environment, interactive task definition

V. Padois – 2021/11/8 Introduction Limitiations Real-life examples Towards solutions Conclusions 12 / 19



Constraints compliance as a control feature

I PhD work of Lucas Joseph, CIFRE GE Healthcare [Joseph 2018c]

I Dynamic environment : perception in the loop and reactive constraints adaptation
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Viability – Do not plan to do what you cannot do.

I Existence of a solution to the control problem over an ∞ time horizon ?
[Fraichard 2004],[Wieber 2008]

I Modify the constraints expression to ensure compatibility [Rubrecht 2012b]

q′min(qk ,νk , ν̇min, ν̇max ) ≤ qk+1 ≤ q′max (qk ,νk , ν̇min, ν̇max )

I Unfortunately ν̇k+1 = M−1(qk )(ST (qk )τ k+1 − b(qk ,νk )) → ν̇max,k+n =?

I Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]

I The problem gets even more complex when looking in the task space ?
ẍk+1 = J(qk )M−1(qk )(ST (qk )τ k+1 − b(qk , tνk )) + J̇(qk )νk → ẍmax,k+n =?
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I Unfortunately ν̇k+1 = M−1(qk )(ST (qk )τ k+1 − b(qk ,νk )) → ν̇max,k+n =?

I Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]

I The problem gets even more complex when looking in the task space ?
ẍk+1 = J(qk )M−1(qk )(ST (qk )τ k+1 − b(qk , tνk )) + J̇(qk )νk → ẍmax,k+n =?
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ẍk+1 = J(qk )M−1(qk )(ST (qk )τ k+1 − b(qk , tνk )) + J̇(qk )νk → ẍmax,k+n =?
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Model Predictive Control

I Global optimality does not exist
↪→ Try to be optimal given the current state othe world and its close future predicted

evolution
↪→ Model Predictive Control
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The key ingredient to planning and model predictive control is ...

I ... a very good estimation of your motor capabilities in task space
I Complex : state dependant, polytopes
↪→ MPC based motion replanning with state dependant robot capabilities
I PhD of Nicolas Torres (Cifre PSA) and Antun Skuric (Lichie Airbus)

[Skuric 2021] [Pickard 2021] [Skuric 2022]

V. Padois – 2021/11/8 Introduction Limitiations Real-life examples Towards solutions Conclusions 16 / 19



Conclusions

I Global optimality does not exist a
priori

! Solving accurately for the full control
trajectory does not make sense ...

! ... and is hardly doable in a
closed-loop way

I Closed-loop local planning at high
level with low-level capabilities in
mind

I Solve reactively at low-level with
constraints

I Human modeling is a key prerequesite
to human-robot interaction
I Ergonomics [Maurice 2017], Motor

variability [Savin 2020]
I Physical capabilities [Benhabib 2020],

[Skuric 2022]
I Cognitive abilities (e.g. expertise)

and biases
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– Thank you for your attention –
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